1.

Let k be a positve real number and letA=⎡⎢⎢⎣2k−12√k2√k2√k1−2k−2√k2k−1⎤⎥⎥⎦ and B=⎡⎢⎢⎣−22k−12√k1−2k02√k−√k−2√k0⎤⎥⎥⎦. If det (adj A)+det(adj B)=106, then [k] is equal to[Note: adj M denotes the adjoint of a square matrix M and [k] denotes the largest integer less than or equal to k]

Answer» Let k be a positve real number and let

A=
2k12k2k2k12k2k2k1
and B=
22k12k12k02kk2k0
. If det (adj A)+det(adj B)=106, then [k] is equal to



[Note: adj M denotes the adjoint of a square matrix M and [k] denotes the largest integer less than or equal to k]


Discussion

No Comment Found