InterviewSolution
Saved Bookmarks
| 1. |
Let k be a positve real number and letA=⎡⎢⎢⎣2k−12√k2√k2√k1−2k−2√k2k−1⎤⎥⎥⎦ and B=⎡⎢⎢⎣−22k−12√k1−2k02√k−√k−2√k0⎤⎥⎥⎦. If det (adj A)+det(adj B)=106, then [k] is equal to[Note: adj M denotes the adjoint of a square matrix M and [k] denotes the largest integer less than or equal to k] |
|
Answer» Let k be a positve real number and let A=⎡⎢ ⎢⎣2k−12√k2√k2√k1−2k−2√k2k−1⎤⎥ ⎥⎦ and B=⎡⎢ ⎢⎣−22k−12√k1−2k02√k−√k−2√k0⎤⎥ ⎥⎦. If det (adj A)+det(adj B)=106, then [k] is equal to [Note: adj M denotes the adjoint of a square matrix M and [k] denotes the largest integer less than or equal to k] |
|