| 1. |
Let \( \lambda \) be an integer. If the shortest distance between the lines\( x-\lambda=2 y-1=-2 z \) and \[ x=y+2 \lambda=z-\lambda \] is \( \frac{\sqrt{7}}{2 \sqrt{2}} \) then the value of \( |\lambda| \) is |
|
Answer» We know that distance between two show line \(\frac{x-x_1}{a_1}=\frac{y-y_1}{b_1}=\frac{z-z_1}{c_1}\) and \(\frac{x-x_2}{a_2}=\frac{y-y_2}{b_2}=\frac{z-z_2}{c_2}\) is d = \(\cfrac{\begin{vmatrix}x_2-x_1&y_2-y_1&z_2-z_1\\a_1&b_1&c_1\\a_2&b_2&c_2\end{vmatrix}}{\sqrt{(b_1c_2-b_2c_1)^2+(c_1a_2-c_2a_1)^2+(a_1b_2-a_2b_1)^2}}\) Given lines are x - λ = 2y - 1 = -2z ⇒ \(\frac{x-\lambda}1=\cfrac{y-\frac12}{\frac12}=\cfrac{z}{\frac{-1}2}\) and x = y + 2λ = z - λ ⇒ \(\frac{x-0}1 = \frac{y-(-2\lambda)}1 = \frac{z-\lambda}1\) \(\therefore\) x1 = λ, y1 = 1/2, z1 = λ a1 = 1, b1 = 1, c2 = 1 and a2 = 1, b2 = 1 c2 = 1 \(\therefore\) d = \(\cfrac{\begin{vmatrix}0-\lambda&-2\lambda-1/2&\lambda-0\\1&1/2&-1/2\\1&1&1\end{vmatrix}}{\sqrt{(1/2+1/2)^2+(-1/2-1)^2+(1-1/2)^2}}\) Given that distance between them is \(\frac{\sqrt7}{2\sqrt2}\) \(\therefore\) \(\cfrac{\begin{vmatrix}-\lambda&-2\lambda-1/2&\lambda\\1&1/2&-1/2\\1&1&1\end{vmatrix}}{\sqrt{1+9/4+1/4}}\) \(=\frac{\sqrt7}{2\sqrt2}\) ⇒ \(\cfrac{-\lambda\begin{vmatrix}1/2&-1/2\\1&1\end{vmatrix}+(2\lambda+1/2)\begin{vmatrix}1&-1/2\\1&1\end{vmatrix}+\lambda\begin{vmatrix}1&1/2\\1&1\end{vmatrix}}{\sqrt{\frac72}}\) = \(\frac{\sqrt7}{2\sqrt2}\) ⇒ -λ(1/2 + 1/2) + (2λ + 1/2)(1 + 1/2) + λ(1 - 1/2) = \(\frac{\sqrt7}{2\sqrt2}\times\frac{\sqrt7}{\sqrt2}\) ⇒ -λ + 3λ + 3/4 + λ/2 = 7/4 ⇒ \(\frac{2\lambda+6\lambda+\lambda}2\) = \(\frac74-\frac34 = \frac44=1\) ⇒ 5λ = 2 ⇒ λ = 2/5 |
|