1.

Let \(\left<x_n\right>\) and \(\left<y_n\right>\) be real sequences and let for some k ϵ N, 0 ≤ xn ≤ yn for n ≥ k.Then, which of the following statements is true?1. Divergence of ∑ yn ⇒ Divergence of ∑ xn2. ∑ xn and ∑ yn are always divergent3. Convergence of ∑ xn ⇒ Convergence of ∑ yn4. Convergence of ∑ yn ⇒ Convergence of ∑ xn

Answer» Correct Answer - Option 4 : Convergence of ∑ yn ⇒ Convergence of ∑ xn

Concept:

The convergence or divergence of sequences is tested by various methods. One is Comparison test.

Comparison test:

Suppose that we have two series ∑an and ∑bn with an, bn ≥ 0 for all n and an ≤ bn for all n. Then, 

1. If ∑bn is convergent then so is ∑an

2. If ∑an is divergent then so is ∑bn

The statement 1 is given in the 4th option.



Discussion

No Comment Found

Related InterviewSolutions