1.

Let m,n be two positive real numbers and define f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx and g(m,n)=int_(0)^(1)x^(m-1)(1-m)^(n-1)dx. It is known that f(n) for n gt 0 is finite and g(m, n) = g(n, m) for m, n gt 0. int_(0)^(oo)(x^(m-1))/((1+x)^(m+n))dx=

Answer»

g(m,N)
`g(m-1,n)`
`g(m-1,n-1)`
`g(m,n-1)`

SOLUTION :`g(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)DT`
Put `x=(1)/(1+y)`
`rArr""g(m,n)=int_(oo)^(0)(1)/((1+y)^(m-1))(1-(1)/(1+y))^(n-1)(-(1)/((1+y)^(2)))dy`
`""=int_(0)^(oo)(y^(n-1))/((1+y)^(m+n))dy`
`""=int_(0)^(oo)(x^(n-1))/((1+x)^(m+n))dx`


Discussion

No Comment Found

Related InterviewSolutions