1.

Let n be a positive integer if 1le1gt K len such that (sin^(2)nx)/(sin^(2)x)=a_(@)+sum_(1ge i lt klen) a_(1,k) cos 2 (k-1) for all real number x with x not an integer multiple of pi, then the value of a_(1,k) is

Answer»


SOLUTION :`s=sin2x+sin4x+……+sin2nx`
`=(sin nx-sin(n+1)x)/(sinx)`
`C=cos2x+cos4c+………..+cos2nx`
`=(sin nx cos (n+1)x)/(sinx)`
`((sin^(2)nx)/(sin^(2)nx))^(2)=((sin n XSIN(n+1)x)/(sinx))^(2)+((sin n cos(n+1)x)/(sinx))^(2)=s^(2)+c^(2)`
On the other hand `s^(2)+c^(2)=(sin2x+sin4x+...........sin2nx)^(2)+(cos2x+cos4x+.............+cos2nx)^(2)`
`=n+sum_(1le 1lt k le n) (2sin 2 xsin 2 kx +2cos 2 x cos 2kx)`
`=nn+2 sum_(1le 1 lt k le n)cos2(k-1)x`
`IMPLIES a_(1,k)=2`


Discussion

No Comment Found

Related InterviewSolutions