InterviewSolution
Saved Bookmarks
| 1. |
Let O be a point inside DeltaABC such that angleOAB = angleOBC = angle OCA = theta Area of DeltaABC is equal to |
|
Answer» `((a^(2) + b^(2) + c^(2))/(4)) tan theta` Applying sine rule in `DeltaAOB`, we have `(OA)/(sin angleABO) = (AB)/(sin angle AOB)` or `OA = (c sin angleABO)/(sin angleAOB) = (c sin (B - theta))/(sin B)`...(i) `[ :' angle ABO = B - theta, angle AOB = 180^(@) - theta - angleABO = 180^(@) -B]` Again in `DeltaAOC`, we have `(OA)/(sin angleACO) = (AC)/(sin angleAOC)` `rArr OA = (b sin angleACO)/(sin angleAOC) = (b sin theta)/(sin A)` `[ :' angleOAC = A - theta, angleAOC = 180^(@) - theta - angleOAC = 180^(@)]` From Eqs. (i) and (ii), we have `(c sin (B - theta))/(sin B) = (b sin theta)/(sin A)` or `c sin A (B - theta) = b sin theta sin B` `= b sin theta sin (A +C)` or `2R sin C sin A (sin B cos theta - cos B sin theta)` `= 2R sin B sin theta (sin A cos C + cos A sin C)` Dividing both SIDES by `2R sin theta sin A sin B sin C`, we get `cot theta - cot B = cot C + cot A` or `cot theta = cot A + cot B + cot C` Squaring both sides, we have `cot^(2) theta = cot^(2) A + cot^(2) B + cot^(2)C + 2(cotA cot B + cot B cot C + cot C cot A)` or `cosec^(2) theta - 1 = (cosec^(2) A -1) + (cosec^(2) B -1) + (cosec^(2) C -1) + 2` [SINCE in `DeltaABC, cot A cot B + cot B cot C + cot C cot A = 1`] or `cosec^(2) theta = cosec^(2) A + cosec^(2) B + cosec^(2)C` Area of triangle ABC, `Delta = Delta_(1) + Delta_(2) + Delta_(3)` `=(1)/(2) [a OB + b OC + c OA] sin theta` `=(1)/(4) tan theta [2 a OB cos theta + 2B OC cos theta+ 2c OA cos theta]` `=(1)/(4) tan theta [(a^(2) + x^(2) -y^(2)) + (b^(2) + y^(2) - z^(2)) + (c^(2) + z^(2) - x^(2)]` `= (1)/(4) tan theta [a^(2) + b^(2) + c^(2)]` |
|