

InterviewSolution
Saved Bookmarks
1. |
Let `p=[(3,-1,-2),(2,0,alpha),(3,-5,0)],` where `alpha in RR.` Suppose `Q=[q_(ij)]` is a matrix such that `PQ=kl,` where `k in RR, k != 0 and l` is the identity matrix of order 3. If `q_23=-k/8 and det(Q)=k^2/2,` thenA. `alpha0,k=8`B. `4alpha-k+8=0`C. `det(PadjQ)=2^9`D. `det(Q adjP)2^13` |
Answer» Correct Answer - B::C We have, `PQ =kl and det (Q) =k^2/2` `rArr det(PQ)=det(kI) and det (Q)=k^2/2` `rArr det (P) det(Q) =k^3and det (Q) =k^2/2` `rArr k^2/2det(P) =k^3and det(Q) =k^2/2` `rArr det (P) =2k and det (Q) =k^2/2` Again, PQ = kI `rArr Q=P^(-1) (kI) =kP^(-1)` `rArr Q=k(1/absPadjP)` `rArr Q=k(1/(2k) adjP)` `rArr Q=1/2adjP` `rArr q_23 =1/2(adjP) _23 =1/2" cofactor " P_32 =-1/2{:abs((3,-2),(2,alpha)):}` `rArr =-k/8=-1/2(3alpha +4)` `rArr k=12alpha +16 ...(i)` Now, `det (P) =2K` `rArr {:abs((3,-1,-2),(2,0,alpha),(3,-5,0))=2k:}` `rArr 15 alpha-3alpha+20=2k` `rArr k=6alpha+10` Solving (i) and (ii), we get : `alpha=-1 k=4`. `:. 4alpha-k+8=-4-4+8=0` So, option (b) is correct. Now, `det(P(adjQ)) =abs(PadjQ)=absPabs(adjQ)` `=2kabs(Q)^2=2k(k^2/2)^2=1/2k^5=2^9` and, `det (Q(adjP))= abs(QadjP)=absQ abs(adjP)` `=absQabs(P)^2=k^2/2xx(2k)^2=2k^4=2xx(4)^45=2xx(4)^4=2^9` So, option (c) is correct. |
|