1.

Let P be a poointon the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1(agtb) in the first or second quadrants whowse foci are S_(1)and S_(2). Then the least possible value of circumradius of DeltaPS_(1)S_(2) will be

Answer»

<P> ae
be
`(ae)/(b)`
`(ae^(2))/(b)`

Solution :We known that CIRCUMRADIUS of triangle
`R=("Product of all sides")/(4xx"Area of triangle")`ltbr Consider point `P(a cos theta, b SIN thea)` on the ELLIPSE.

`:.` Circumrdius , `R=(a(1-ecostheta)xxa(1+ecostheta)xx2ae)/(4xx(1)/(2)b sin thetaxx2ae)`
`=(a^(2)(1-e^(2)cos^(2)theta))/(2b sin theta)`
`=(a^(2)(1-e^(2)(1-sin^(2)theta)))/(2b sin theta)`
`=(a^(2))/(2)(e^(2)sintheta+(b^(2))/(a^(2))"cosec"theta)`
`GE(a^(2))/(2b)xx(2be)/(a)ae`
`:.R_("min")=(a^(2))/(2b)xx(2be)/(a)=ae`


Discussion

No Comment Found

Related InterviewSolutions