

InterviewSolution
Saved Bookmarks
1. |
Let `p=lim_(x->0^+)(1+tan^2 sqrt(x))^(1/(2x))` then log p is equal to` |
Answer» `p=lim_(x->0^+)(1+tan^2sqrtx)^(1/(2x))` `p=e^(lim_(x->0+))1/(2x)(x+tan^2sqrtx-x)` `=e^(lim_(x->0^+)1/2tan^2sqrtx)/sqrtx^2` `=e^(lim_(x->0^+)(1/2(tansqrtx)/sqrtx)^2` `p=e^(1/2)` `logp=log(e^(1/2))=1/2loge` `logp=1/2`. |
|