

InterviewSolution
Saved Bookmarks
1. |
Let P(x) be a cubic polynomial such that coefficient of `x^3` is 1 `, p(1) = 1, p(2) = 2, p(3) = 3 then the value of p(4) is : |
Answer» Let `P(x) = x^3+ax^2+bx+c` Then, `P(1) = 1+a+b+c = 1` `=> a+b+c = 0->(1)` `P(2) = 8+4a+2b+c = 2=> 4a+2b+c = -6->(2)` `P(3) = 27+9a+3b+c = 3=>9a+3b+c = -24->(3)` Subtracting (1) from (2) `3a+b = -6->(4)` Subtracting (2) from (3) `5a+b = -18->(5)` Subtracting (4) from (5) `2a = -12 => a = -6` `=> b = -6+18 = 12` `c = -a-b = 6-12 = -6` So, our polynomial becomes, `P(x) = x^3-6x^2+12x-6 = 0` `:.P(4) = 64-96+48-6 = 10` |
|