InterviewSolution
Saved Bookmarks
| 1. |
Let PQ be a focal chord of the parabola y^(2) = 4ax. The tangents to the parabola at P and Q meet at a point lying on the line y = 2x + a,a gt 0. If chord PQ subtends an angle theta at the vertex of y^(2) = 4ax, then tan theta is equal to |
|
Answer» `(2)/(3) SQRT(7)` `m_(OQ) = (-2a//t)/(a//t^(2)) = - 2T` `:. TAN theta = ((2)/(t) + 2t)/(1 - (2)/(t).2t) = (2(t - (1)/(t)))/(1 - 4) = (-2 sqrt(5))/(3)` Where `t + (1)/() = sqrt(5)` |
|