1.

Let Q+ be the set of all positive rational numbers. (i) Show that the operation * on Q+ defined by \(a*b=\frac{1}{2}(a+b)\) is a binary operation. (ii) Show that * is commutative. (iii) Show that * is not associative.

Answer»

(i) * is an operation as \(a*b=\frac{1}{2}(a+b)\)where a, b ∈ Q+. Let a =1 and b = 2 two integers. 

\(a*b=\frac{1}{2}(1+2)\)\(\Rightarrow \frac{3}{2}\in Q ^+\)

So, * is a binary operation from Q+ x Q+ → Q+

(ii) For commutative binary operation, a*b = b*a. 

\(b*a=\frac{1}{2}(2+1)\)\(\Rightarrow \frac{3}{2}\in Q^+\)

Since a*b = b*a, hence * is a commutative binary operation. 

(iii) For associative binary operation, a*(b*c) = (a*b) *c. 

\(a*(b*c)=a*\frac{1}{2}(b+c)\)\(\Rightarrow \cfrac{1}{2}\left(a+\frac{b+c}{2}\right)\)\(=\frac{1}{4}(2a+b+c)\)

\((a*b)*c=\frac{1}{2}(a+b)*c\)\(\Rightarrow \frac{1}{2}\left(\frac{a+b}{2}+c\right)\)\(=\frac{1}{4}(a+b+2c)\)

As a*(b*c) ≠(a*b) *c, hence * is not associative binary operation.



Discussion

No Comment Found

Related InterviewSolutions