

InterviewSolution
Saved Bookmarks
1. |
Let R be a relation on the set of all real numbers R R = {(a, b) ∈R × R : a2 + b2 = 1}, then R is(a) Equivalence (b) Only transitive (c) Only symmetric (d) None of these |
Answer» (c) Only symmetric • V a ∈ R, a2 + a2 ≠ 1 ⇒ (a, a) ∉R ⇒ R is not reflexive. For example, 02 + 02 = 0, 12 + 12 = \(\big(\frac{1}{2}\big)^2\) + \(\big(\frac{1}{2}\big)^2\) = \(\frac{1}{2}\) and so on. • V a, b ∈R, (a, b) ∈R ⇒ a2 + b2 = 1 ⇒ b2 + a2 = 1 ⇒ (b, a) ∈R ⇒ R is symmetric • V a, b, c ∈R, (a, b) ∈R and (b, c) ∈R ⇒ a2 + b2 = 1 and b2 + c2 = 1 which does not necessarily mean a2 + c2 = 1 ⇒ (a, c) ∉R For example, let a = 0, b = 1, c = 0 02 + 12 = 1 and 12 + 02 = 1 But 02 + 02 ≠ 1. |
|