1.

Let R be a relation on the set of all real numbers R R = {(a, b) ∈R × R : a2 + b2 = 1}, then R is(a) Equivalence (b) Only transitive (c) Only symmetric (d) None of these

Answer»

(c) Only symmetric

V a ∈ R, a2 + a2 ≠ 1 ⇒ (a, a) ∉R ⇒ R is not reflexive. 

For example, 02 + 02 = 0, 12 + 12\(\big(\frac{1}{2}\big)^2\) + \(\big(\frac{1}{2}\big)^2\) = \(\frac{1}{2}\)

and so on. 

V a, b ∈R, (a, b) ∈R ⇒ a2 + b2 = 1 ⇒ b2 + a2 = 1 

⇒ (b, a) ∈R 

⇒ R is symmetric 

V a, b, c ∈R, (a, b) ∈R and (b, c) ∈R 

⇒ a2 + b2 = 1 and b2 + c2 = 1 which does not necessarily mean 

a2 + c2 = 1 ⇒ (a, c) ∉R 

For example, let a = 0, b = 1, c = 0 

02 + 12 = 1 and 12 + 02 = 1 

But 02 + 02 ≠ 1.



Discussion

No Comment Found

Related InterviewSolutions