InterviewSolution
Saved Bookmarks
| 1. |
Let R be the set of all real numbers and let f be a function from R to R such that `f(X)+(X+1/2)f(l-X)=1,` for all `xinR." Then " 2f(0)+3f(1)` is equal to-A. 2B. 0C. -2D. -4 |
|
Answer» Correct Answer - C `f(x)+(x+1/2)f(1-x)=1` `f(l-x)+(1-x+1/2)f(1-(1-x))=1` `f(1-x)+(3/2-x)f(x)=1` `(1-f(x))/(x+1/2)+(3/2-x)f(x)=1` `1-f(x)+(3/2x-x^(2)+3/4-x/2)f(x)=x+1/2` `f(x)(x-x^(2)-1/4)=x-1/2` `f(x)(4x-4x^(2)-1)=4x-2` `f(x)=(-2+4x)/(4x-4x^(2)-1)` `2f(0)+3f(1)=2((-2+0)/(0-0-1))+3((-2+4)/(4-4-1))` `=+4+(3(+2))/-1=+4-6=-2` Alternate Put x = 0 `f(0)+1/2f(1)=1rArr2f(0)+f(1)=2` put x = 1 `f(1)+3/2f(0)=1rArr2f(1)+3f(0)=2` solving above `f(0)=2" and "f(1)=-2` `:. 2f(0)+3f(1)=4-6=-2` |
|