InterviewSolution
Saved Bookmarks
| 1. |
Let S be the set of all real numbers. Show that the relation R = {(a, b) : a2 + b2 = 1} is symmetric but neither reflexive nor transitive. |
|
Answer» Given that, ∀ a, b ∈ S, R = {(a, b) : a2 + b2 = 1 } Now, R is Reflexive if (a,a) ∈ R ∀ a ∈ S For any a ∈ S, we have a2+a2 = 2 a2 ≠ 1 ⇒ (a,a) ∉ R Thus, R is not reflexive. R is Symmetric if (a,b) ∈ R ⇒ (b,a) ∈ R ∀ a,b ∈ S (a,b) ∈ R ⇒ a2 + b2 = 1 ⇒ b2 + a2 = 1 ⇒ (b,a) ∈ R Thus, R is symmetric . R is Transitive if (a,b) ∈ R and (b,c) ∈ R ⇒ (a,c) ∈ R ∀ a,b,c ∈ S Let (a,b) ∈ R and (b,c) ∈ R ∀ a, b,c ∈ S ⇒ a2 + b2 = 1 and b2 + c2 = 1 Adding both, we get a2+ c2+2b2 = 2 ⇒ (a, c) ∉ R Thus, R is not transitive. Thus, R is symmetric but neither reflexive nor transitive. |
|