1.

Let `tan^(-1)y=tan^(-1)x+tan^(-1)((2x)/(1-x^2))`, where `|x|

Answer» Correct Answer - A
Given ` tan ^(-1) y = tan ^(-1) x + tan ^(-1) ((2x)/( 1- x ^(2)))`
where `|x| lt (1)/(sqrt 3) rArr tan ^(-1) y = tan ^(-1) {( x + (2x )/( 1-x ^(2)))/( 1- x (( 2x )/( 1 - x ^(2)))) }`
`[because tan ^(-1) x + tan ^(-1) y = tan ^(-1) ((x + y )/( 1- xy )), where x gt 0, y gt 0 and xy lt 1]`
`" " =tan ^(-1) ((x - x ^(3) + 2x )/( 1 - x ^(2) - 2x ^(2))) `
`tan ^(-1) y = tan ^(-1) ((3x - x ^(3))/( 1 - 3x ^(2)))`
`rArr " " y = ( 3x - x ^(3))/( 1 - 3x ^(2))`
` " " |x| lt (1)/(sqrt 3)`
`rArr " " - (1)/(sqrt (3)) lt x lt (1)/(sqrt 3)`
Let ` x = tan theta `
`rArr " " - ( pi )/(6) lt theta lt (pi)/(6)`
`therefore " " tan ^(-1) y = theta + tan ^(-1) ( tan 2 theta) = theta + 2theta = 3 theta `
`rArr " " y = tan 3 theta `
`rArr " " y = ( 3 tan theta - tan ^(3) theta)/( 1- 3 tan ^(2) theta)`
` rArr " " y = ( 3x - x ^(3))/( 1- 3x ^(2))`


Discussion

No Comment Found