InterviewSolution
Saved Bookmarks
| 1. |
Let the equation of a curve passing through the point (0,1) be given b `y=intx^2e^(x^3)dx`. If the equation of the curve is written in the form `x=f(y)`, then f(y) isA. `sqrt(log_(e)(3y-2))`B. `root(3)(log_(e)(3y-2))`C. `root(3)(log_(e)(2-3y))`D. none of these |
|
Answer» Correct Answer - b We have , `y=intx^(2)e^(x^(3))dx=(1)/(3)inte^(x^(3))d(x^(3))=(1)/(3)e^(x^(3))+C`. It passes throught ( 0 , 1) Therefore , `1=(1)/(3)+CrArrC=(2)/(3)` `thereforey=(1)/(3)e^(x^(3))+(2)/(3)` `rArr3y=e^(x^(3))+2` ` rArr e^(x^(3))=3y=2rArrx^(3)-log_(e)(3y-2)rarrc=root(3)(log_(e)(3y-2))` |
|