1.

Let the function g:`(-oo,oo)rarr (-pi //2,pi//2)` be given by g(u) `= 2 tan^(-1) (e^u)-pi/2` Then g isA. even and is strictly increasing in `(0,oo)`B. odd and is strictly decreasing `(-oo,oo)`C. odd and is strictly increasing in `(-oo,oo)`D. neither even nor odd , but is stictly increasing in `(-oo,oo)`

Answer» Correct Answer - C
we have
` g(u)=2 tan^(-1) (e^u)-pi/2`
`rArr g(u)=(2e^u)/(1+ e^(2u))gt 0 "for all u " rarr (-oo ,oo)`
`rarr` g is stictly increasing function in `(-oo,oo)`
Now
`g(u) = tan^(-1)(e^u)-pi/2`
`rArr g(u) = tan^(-1)(e^u )-(pi/2-tan ^(-1)(e^u))`
`rArr g(u)=tan^(-1)(e^u)-cot^(-1)(e^(u))`
`rArr g(-u)=tan ^(-1)(e^u)-cot^(-1)(e^(-u))`
`rArr g(-u) = tan^(-1)(e^(1//u))-cot^(-1)(e^(1//u))`
`rArr g(-u)=cot^(-1)(e^u)-tan^(-1)(e^u)=-g(u)`
Hence g(u) is odd and is strictly increasing `(-oo,oo)`


Discussion

No Comment Found

Related InterviewSolutions