1.

Let the slope of the curve y = sin-1 (cos x) be tan θ, then the value of θ in the interval (0, π) is1. π/62. π/43. 3π/44. -π/4

Answer» Correct Answer - Option 3 : 3π/4

Concept:

Formula:

  • cos-1 (cos x) = x
  • sin-1 (sin x) = x
  • Slope of the curve = tan θ = \(\rm \frac {dy}{dx}\)

 

Calculation:

Given: Slope = tan θ

y = sin-1 (cos x)

⇒ y = sin-1 (sin (π/2 -x))

⇒ y = π/2 – x                                        (∵ sin-1 (sin x) = x)

Differentiating both sides with respect to x, we get

\(\rm \frac {dy}{dx}\) = -1

As we know, Slope = \(\rm \frac {dy}{dx}\)

⇒ tan θ  = -1

∴ θ = 3π/4



Discussion

No Comment Found

Related InterviewSolutions