InterviewSolution
Saved Bookmarks
| 1. |
Let vec(a),vec(b), & vec(c) be three vectors such that |vec(b)| = 2|vec(a)| & |vec(c)| = 3|vec(a)|. The Angle between each pair of vectors is 60^(@) such that |vec(a) + 2vec(b) + 3vec(c)| = sqrt(21) then sqrt(7)| vec(c)| is equal to |
|
Answer» `|vec(b)| = 2k` `|vec(C)| = 3k` `|vec(a) + 2vec(b) + 3vec(c)| = sqrt(21)` `(|vec(a) + 2vec(b) + 3vec(c)|)^(2) = 21` `a^(2) + 4b^(2) + 9C^(2) + 2[2vec(a) cdot vec(b) + 6vec(b) cdot vec(c) + 3vec(c) cdot vec(a)] = 21` `k^(2) + 16k^(2) + 81k^(2) + 2[(4k^2)/2 + (36k^2)/2 + (9k^2)/2] = 21` `147k^(2)= 21 IMPLIES k = +- 1/(sqrt7)` `|c| = 3k = 3/(sqrt7)` [magnitude is ALWAYS +ve]` |
|