1.

Let z_1 , z_2 and z_3 be three distinct complex numbers satisfying |z_1|=|z_2|=|z_3|=1. Which of the following is/aretrue ?

Answer»

If arg`(z_1/z_2)=pi/2` then arg `((z-z_1)/(z-z_2)) gt pi/4` where | z| gt 1
`|z_1z_2+z_2z_3 + z_3z_1|=|z_1+z_2+z_3|`
`LIM(((z_1+z_2)(z_2+z_3)(z_3+z_1))/(z_1.z_2.z_3))=0`
If `|z_1-z_2|=sqrt2|z_1-z_3|=sqrt2| z_2-z_3|`, then Re `((z_3-z_1)/(z_3-z_2))` = 0

ANSWER :B::C::D


Discussion

No Comment Found

Related InterviewSolutions