1.

LetA be a `2xx2`matrix with real entries. Let I be the `2xx2`identity matrix. Denote by tr (A), the sumof diagonal entries of A. Assume that `A^2=""I`.Statement1: If `A!=I`and `A!=""-I`, then det `A""=-1`.Statement2: If `A!=I`and `A!=""-I`,then `t r(A)!=0`.(1)Statement 1is false, Statement `( 2) (3)-2( 4)`is true(6)Statement 1is true, Statement `( 7) (8)-2( 9)`(10)is true, Statement `( 11) (12)-2( 13)`is a correct explanation forStatement 1(15)Statement 1is true, Statement `( 16) (17)-2( 18)`(19)is true; Statement `( 20) (21)-2( 22)`is not a correct explanationfor Statement 1.(24)Statement 1is true, Statement `( 25) (26)-2( 27)`is false.A. Statement -1 is true, Statement-2 is true, Statement-2 is a correct explanation for Statement-1B. Statement -1 is true, Statement - 2 is true, Statement -2 is not a correct explanation for Statement-1C. Statement-1 is true, Statement-2 is falseD. Statement-1 is false, Statement-2 is true

Answer» Correct Answer - C
Let `A = [[1,0],[0,-1]]or [[-1,0],[0,1]]`
Then `A^(2) = I`
`therefore A = abs((1,0),(0,-1))= - 1 and tr (A)=0`


Discussion

No Comment Found

Related InterviewSolutions