1.

LetA be a `2xx2`matrix with real entries. Let I be the `2xx2`identity matrix. Denote by tr (A), the sumof diagonal entries of A. Assume that `A^2=""I`.Statement1: If `A!=I`and `A!=""-I`, then det `A""=-1`.Statement2: If `A!=I`and `A!=""-I`,then `t r(A)!=0`.

Answer» `A= [(a,b),(c,d)]`
`A^2 = [(a,b),(c,d)][(a,b),(c,d)]`
`= [(a^2+ bc, ab+bd),(ac+cd,bc+d^2)] = I`
`a^2 + bc = bc + d^2 = 1`
`ac+cd = ab+bd = 0`
`c(a+d) = 0`
`b(a+d) = 0`
`c=0 or a=-d` not possible for c
`b= 0 or a=-d` not possible for b
`|(a,b),(c,d)| = ad - bc = -d^2 - bc`
`= -(d^2 + bc) = -1`
`tr (A) = a+d= a-a = 0`
so, option 4 is correct


Discussion

No Comment Found

Related InterviewSolutions