1.

LetL be the line of intersection of the planes `2x""+""3y""+""z""=""1`and `x""+""3y""+""2z""=""2`. If L makes an angles ` alpha `withthe positive x-axis, then cos` alpha `equals`1/(sqrt(3))``1/2`1`1/(sqrt(2))`A. `1`B. `1/(sqrt(2))`C. `1/(sqrt(3))`D. `1/2`

Answer» Correct Answer - C
Vectors normals to the given planes are `vecn_(1)=2hati+3hatj+k` and `vecn_(2)=hati+3hatj+2hatk`. So the line `L` is parallel
`vecn_(1)=vecn_(1)xxvecn_(2)=|(hati,hatj,hatk),(2,3,1),(1,3,2)|=3hati-3hatj+3hatk`
`implies cos alpha=(vecn.hati)/(|vecn||hati|)=3/(3sqrt(3))=1/(sqrt(3))`


Discussion

No Comment Found

Related InterviewSolutions