1.

lf `(3a)^log3= (4b)^log4` and `4^loga=3^logb` ,then a+b=

Answer» `(3a)^(log3)=(4b)^(log4)`
`log[log(3a)]=log4[log(4b)]`
`log3[log3+loga]+log4[log4+logb]-(1)`
`4^(loga)=3^(logb)`
`logalog4=logblog3`
`loga=(logblog3)/(log4)-(2)`
`log3[log3+(logblog3)/(log4)]=log4[log4+logb]`
`(log3)^2[1+(logb)/(loga)]=log4[log4+logb]`
`(log)^3(log4+logb)=(log4)^2[log4+logb]`
`log4+logb=0`
`b=1/4`
`loga=(log(1/4)log3)/(log4)`
`=(-log4log3)/(log4)`
`a=1/3`
`a+b=1/3+1/4=(4+3)/12=7/12`.


Discussion

No Comment Found

Related InterviewSolutions