1.

`lim_(x ->0^+) (cosec x)^(1/logx)`

Answer» `l = lim_(x->0^+) (cosec x)^(1/logx) , (oo)^(1/oo) x`
`log l = lim_(x->0^+) 1/log x log cosecx`
`= lim_(x->0^+) (-1/(cosecx) cotxcosecx)/(1/x)`
`= lim_(x->0+) x cotx`
`log l = 0`
`l= 1`
Answer


Discussion

No Comment Found

Related InterviewSolutions