InterviewSolution
Saved Bookmarks
| 1. |
`lim_(xrarr0) x^8[(1)/(x^3)]`, where `[.]`,denotes the greatest integer function isA. a non-zero positive real numberB. a negative real numberC. 0D. non-existent |
|
Answer» Correct Answer - C For any `x in R`, we have `x-1lt [x]le x` ` rArr (1)/(x^3)-1lt [(1)/(x^3)]le(1)/(x^3)"for all " 0 ne in R` ` rArr x^8((1)/(x^3-1))lt x^8[(1)/(x^3)]le x^5 " for all " x (ne 0) in R` `rArr x^5-x^8lt x^8[(8)/(x^3)]le x^5" for all " 0 ne x in R` But , `lim_(xto0) x^5-x^8=0and lim_(xto0) x^5=0`. So, by Sandwich theorem, we have `lim_(xto0) x^8[(1)/(x^3)]=0`. |
|