1.

`lim_(xto0) ((1+tanx)/(1+sinx))^(cosecx)` is equal toA. `underset(xto0)limf(x)` exists for `ngt0`B. `underset(xto0)limf(x)` does not exists for `nlt0`C. `underset(xto0)limf(x)` does not exists for any value of nD. `underset(xto0)limf(x)` exists for any value of n

Answer» Correct Answer - C
`underset(xto0)lim((1+tanx)/(1+sinx))^(cosecx)=underset(xto0)lim((1+tanx)^((1)/(sinx)))/((1+sinx)^((1)/(sinx)))`
`=(underset(xto0)lim((1+tanx)^((1)/(tanx)))^((1)/(cosx)))/((1+sinx)^((1)/(sinx)))`
`=(e^((1)/(cos0)))/(e)=1`


Discussion

No Comment Found