InterviewSolution
Saved Bookmarks
| 1. |
`lim_(xto1) (xsin(x-[x]))/(x-1)`, where `[.]` denotes the greatest integer function, is equal toA. `(2)/(pi-1)`B. `(pi+1)/(2)`C. `(2)/(pi+1)`D. `(2(pi+1))/(pi-1)` |
|
Answer» Correct Answer - C `underset(xto1)lim(xsin(x-[x]))/(x-1)` Now,`L.H.L.=underset(hto0)lim((1-h)sin(1-h-[1-h]))/((1-h)-1)` `=underset(hto0)lim((1-h)sin(1-h))/(-h)=-oo` `R.H.L.=underset(hto0)lim((1+h)sin(1+h-[1+h]))/((1+h)-1)=underset(hto0)lim((1+h)sinh)/(h)=1` Hence, the limit does not exist. |
|