1.

`lim_(xto1) (xsin(x-[x]))/(x-1)`, where `[.]` denotes the greatest integer function, is equal toA. `(2)/(pi-1)`B. `(pi+1)/(2)`C. `(2)/(pi+1)`D. `(2(pi+1))/(pi-1)`

Answer» Correct Answer - C
`underset(xto1)lim(xsin(x-[x]))/(x-1)`
Now,`L.H.L.=underset(hto0)lim((1-h)sin(1-h-[1-h]))/((1-h)-1)`
`=underset(hto0)lim((1-h)sin(1-h))/(-h)=-oo`
`R.H.L.=underset(hto0)lim((1+h)sin(1+h-[1+h]))/((1+h)-1)=underset(hto0)lim((1+h)sinh)/(h)=1`
Hence, the limit does not exist.


Discussion

No Comment Found