InterviewSolution
Saved Bookmarks
| 1. |
Line OQ is angle bisector of angle O of right angle triangle OPR, right angle at P. Point Q is such that ORQP is concyclic. If point O is orign and points P,Q,R are represented by the complexnumbers z_(3),z_(2),z_(1) respectively. If (z_(2)^(2))/(z_(1)z_(2))=3/2 then (R is circum radius of /_\OPR) |
|
Answer» Angles of `/_\OPR` are `(pi)/6,(pi)/3,(pi)/2` `(z_(2))/(z_(1))=costhetae^(itheta)` `(z_(3))/(z_(1))=(COS2THETA)/(costheta).e^(itheta)` So `(z_(2)^(2))/(z_(3)z_(1))=(cos^(2)theta)/(cos2theta)=3/2` `theta=(pi)/6`
|
|