1.

log2, log(2n − 1) and log (2n + 3) are in A.P. Show that n = \(\frac{log5}{log2}\)

Answer»

Given, log2, log(2n − 1) and log (2n + 3) are in A.P.

∴ log(2n + 3) − log(2n − 1) = log(2n − 1) - log2

⇒ log \(\big(\frac{2^n+3}{2^n−1}\big)\) = log \(\big(\frac{2^n-1}{2}\big)\)

Taking antilog, we get

\(\frac{2^n+3}{2^n−1}\) = \(\frac{2^n-1}{2}\)

⇒ 2n − 4.2n − 5 = 0

⇒ y2 − 4y − 5 = 0 where y = 2n

⇒ y − 5 and y = −1 (reject)

Hence, 2n = 5

or n log2 = log5 or n = \(\frac{log5}{log2}\)



Discussion

No Comment Found