InterviewSolution
Saved Bookmarks
| 1. |
माना `f(x)=x^(2)-5x+6` तो `f(A)`, ज्ञात कीजिए यदि `A=[(2,0,1),(2,1,3),(1,-1,0)]` |
|
Answer» यहां `f(x)=x^(3)-5x+6` `:.f(A)=A^(2)-5A+6I` जहां `I=[(1,0,0),(0,1,0),(0,0,1)]` [आव्यूह बहुपद की परिभाषा से] अब `A^(2)=AA=[(2,0,1),(2,1,3),(1,-1,0)][(2,0,1),(2,1,3),(1,-1,0)]` `impliesA^(2)=[(4+0+1,0+0-1,2+0+0),(4+2+3,0+1-3,2+3+0),(2-2+0,0-1+0,1-3+0)]` `=[(5,-1,2),(9,-2,5),(0,-1,-2)]` `-5A=[((-5)xx2,(-5)xx0,(-5)xx1),((-5)xx2,(-5)xx1,(-5)xx3),((-5)xx1,(-5)xx(-1),(-5)xx0)]` `=[(-10,0,-5),(-10,-5,-15),(-5,5,0)]` और `6I=6[(1,0,0),(0,1,0),(0,0,1)]=[(6,0,0),(0,6,0),(0,0,6)]` `:.f(A)=A^(2)-5A+6I` `=[(5,-1,2),(9,-2,5),(0,-1,-2)]+[(-10,0,-5),(-10,-5,-15),(-5,5,0)]+[(6,0,0),(0,6,0),(0,0,6)]` `f(A)=[(5-10+6,-1+0+0,2-5+0),(9-10+0,-2-5+6,5-15+0),(0-5+0,-1+5+0,-2+0+6)]` `=f(A)=A^(2)-5A+6I=[(1,-1,-3),(-1,-1,-10),(-5,4,4)]` |
|