1.

माना `f(x)=x^(2)-5x+6` तो `f(A)`, ज्ञात कीजिए यदि `A=[(2,0,1),(2,1,3),(1,-1,0)]`

Answer» यहां
`f(x)=x^(3)-5x+6`
`:.f(A)=A^(2)-5A+6I`
जहां `I=[(1,0,0),(0,1,0),(0,0,1)]`
[आव्यूह बहुपद की परिभाषा से]
अब `A^(2)=AA=[(2,0,1),(2,1,3),(1,-1,0)][(2,0,1),(2,1,3),(1,-1,0)]`
`impliesA^(2)=[(4+0+1,0+0-1,2+0+0),(4+2+3,0+1-3,2+3+0),(2-2+0,0-1+0,1-3+0)]`
`=[(5,-1,2),(9,-2,5),(0,-1,-2)]`
`-5A=[((-5)xx2,(-5)xx0,(-5)xx1),((-5)xx2,(-5)xx1,(-5)xx3),((-5)xx1,(-5)xx(-1),(-5)xx0)]`
`=[(-10,0,-5),(-10,-5,-15),(-5,5,0)]`
और `6I=6[(1,0,0),(0,1,0),(0,0,1)]=[(6,0,0),(0,6,0),(0,0,6)]`
`:.f(A)=A^(2)-5A+6I`
`=[(5,-1,2),(9,-2,5),(0,-1,-2)]+[(-10,0,-5),(-10,-5,-15),(-5,5,0)]+[(6,0,0),(0,6,0),(0,0,6)]`
`f(A)=[(5-10+6,-1+0+0,2-5+0),(9-10+0,-2-5+6,5-15+0),(0-5+0,-1+5+0,-2+0+6)]`
`=f(A)=A^(2)-5A+6I=[(1,-1,-3),(-1,-1,-10),(-5,4,4)]`


Discussion

No Comment Found

Related InterviewSolutions