1.

Match List I with the List II and select the correct answer using the code given below the lists : List IList II(A)If limx→∞(x2+1x+1−ax−b)=0, then (P)a=32,b∈R(B)If limx→0(1+ax+bx2)2/x=e3, then(Q)a=1,b=−12(C)If limx→0(aex−bx)=2, then(R)a=1,b=−1(D)If limx→∞{√(x2−x+1)−ax−b}=0, then(S)a=2,b=2Which of the following is the only CORRECT combination?

Answer»

Match List I with the List II and select the correct answer using the code given below the lists :



List IList II(A)If limx(x2+1x+1axb)=0, then (P)a=32,bR(B)If limx0(1+ax+bx2)2/x=e3, then(Q)a=1,b=12(C)If limx0(aexbx)=2, then(R)a=1,b=1(D)If limx{(x2x+1)axb}=0, then(S)a=2,b=2



Which of the following is the only CORRECT combination?



Discussion

No Comment Found