InterviewSolution
Saved Bookmarks
| 1. |
Match the following lists and and then choose the correct code. |
|
Answer» <P>`{:(a,b,c,d),(p,r,q,q):}` a. We GET COMMON NORMAL perpendicular to y=x. So, slope `=-1rArrx+y=3a` b. Tangent to the parabola y=mx+a/m passes through the point P(h,k). `rArrm^(2)h-mk+a=0` If its roots are `m_(1)andm_(2)`, then `m_(1)m_(2)-+1` Thus, locus is x=a. c. The tangents are `y=m(x+a)+a//m`(1) `andy=(-1)/(m)(x+2a)-2am`(2) Subtracting (1) from (2), we get x+3a=0 d. If chord joining `t_(1)andt_(1)` subtends angle of `90^(@)` at vertex then `t_(1)t_(2)=-4`. Point of intersection of tangents is `(-at_(1)t_(1),-a(t_(1)+t_(1)))`. So, the locus is x=4a. |
|