1.

Match the following lists and and then choose the correct code.

Answer»

<P>`{:(a,b,c,d),(p,r,q,q):}`
`{:(a,b,c,d),(q,p,r,s):}`
`{:(a,b,c,d),(s,p,q,r):}`
`{:(a,b,c,d),(r,s,q,p):}`

Solution :2
a. We GET COMMON NORMAL perpendicular to y=x.
So, slope `=-1rArrx+y=3a`
b. Tangent to the parabola y=mx+a/m passes through the point P(h,k).
`rArrm^(2)h-mk+a=0`
If its roots are `m_(1)andm_(2)`, then `m_(1)m_(2)-+1`
Thus, locus is x=a.
c. The tangents are
`y=m(x+a)+a//m`(1)
`andy=(-1)/(m)(x+2a)-2am`(2)
Subtracting (1) from (2), we get
x+3a=0
d. If chord joining `t_(1)andt_(1)` subtends angle of `90^(@)` at vertex then `t_(1)t_(2)=-4`. Point of intersection of tangents is `(-at_(1)t_(1),-a(t_(1)+t_(1)))`. So, the locus is x=4a.


Discussion

No Comment Found

Related InterviewSolutions