InterviewSolution
Saved Bookmarks
| 1. |
Match the following lists (where `[x]` represents the greatest integer function) and then choose the correct code. Codes : `{:(,"a b c d"),((1),"s r q p"),((2),"q p s p"),((3), "s r p q"),((4),"p p q r"):}` |
|
Answer» Correct Answer - `(2)` a. `underset(xto0)lims(-1)^([1//x])` `L.H.L.=underset(hto0)lim(0-h)(-1)^([(1)/(0-h)])=0` `R.H.L.=underset(hto0)lim(0+h)(-1)^([(1)/(0+h)])=0` b. `underset(xto2)lim(-1)^([x])` `L.H.L.=underset(hto0)lim(-1)^([2-h])=(-1)^(1)=-1` `R.H.L.=underset(hto0)lim(-1)^([2+h])=(-1)^(2)=1` So limit does not exist. c.`underset(xto(3)/(2))lim(x-[x])` `L.H.L.=underset(hto0)lim(3)/(2)-h-[(3)/(2)-h]=underset(hto0)lim(3)/(2)-h-1=(1)/(2)` `R.H.L.=underset(hto0)lim(3)/(2)+h-[(3)/(2)+h]=underset(hto0)lim(3)/(2)+h-1=(1)/(2)` `L.H.L.=R.H.L.=(1)/(2)` `underset(xto0)lim[x]((e^(1//x)-1)/(e^(1//x)+1))` `L.H.L.=underset(hto0)lim[0-h](((1)/(e^(0-h)-1))/((1)/(e^(0-h)+1)))` `=underset(hto0)lim[-h]((e^(-(1)/(h))-1)/((1)/(e^(0-h)+1)))=(-1)xx(-1)=1` R.H.L.`=underset(hto0)lim[0+h]((e^((1)/(h))-1)/(e^((1)/(h)+1)))=0` Limit does not exist |
|