1.

Match the statements of Column I with values of Column II Column IColumn II(A) ∫e2x−2exe2x+1dx=A ln(e2x+1)+B tan−1(ex)+c(p) A=−12, B=−14(B) ∫√x+√x2+2dx=A{x+√x2+2}32+B√x+√x2+2+c(q) A=12, B=−2(C) ∫cos 8x−cos 7x1+2 cos 5xdx=A sin 3x+B sin 2x+c(r) A=13, B=−2(D) ∫ln xx3dx=Aln xx2+Bx2+c(s) A=13, B=−12

Answer»

Match the statements of Column I with values of Column II
Column IColumn II(A) e2x2exe2x+1dx=A ln(e2x+1)+B tan1(ex)+c(p) A=12, B=14(B) x+x2+2dx=A{x+x2+2}32+Bx+x2+2+c(q) A=12, B=2(C) cos 8xcos 7x1+2 cos 5xdx=A sin 3x+B sin 2x+c(r) A=13, B=2(D) ln xx3dx=Aln xx2+Bx2+c(s) A=13, B=12




Discussion

No Comment Found