Saved Bookmarks
| 1. |
Matrix \(A = \begin{bmatrix} 0 & 2b & -2\\[0.3em] 3 & 1& 3 \\[0.3em] 3a&3 & -1 \end{bmatrix}\)is given to be symmetric, find values of a and b. |
|
Answer» We have,
∵ A is symmetric matrix. ⇒ AT = A ⇒ \( \begin{bmatrix} 0 & 3 & 3a\\[0.3em] 2b& 1& 3 \\[0.3em] -2&3 & -1 \end{bmatrix}\) = \( \begin{bmatrix} 0 & 2b & -2\\[0.3em] 3& 1& 3 \\[0.3em] 3a&3 & -1 \end{bmatrix}\) Equating both sides, we get 2b = 3 and 3a = - 2 ⇒ b = \(\frac{3}{2}\) and a = \(-\frac{2}{3}\) |
|