1.

Matrix  \(A = \begin{bmatrix} 0 & 2b & -2\\[0.3em] 3 & 1& 3 \\[0.3em] 3a&3 & -1 \end{bmatrix}\)is given to be symmetric, find values of a and b.

Answer»

 We have,


\(A = \begin{bmatrix} 0 & 2b & -2\\[0.3em] 3 & 1& 3 \\[0.3em] 3a&3 & -1 \end{bmatrix}\)

∵  A is symmetric matrix.

⇒ AT = A

⇒ \( \begin{bmatrix} 0 & 3 & 3a\\[0.3em] 2b& 1& 3 \\[0.3em] -2&3 & -1 \end{bmatrix}\)

\( \begin{bmatrix} 0 & 2b & -2\\[0.3em] 3& 1& 3 \\[0.3em] 3a&3 & -1 \end{bmatrix}\)

Equating both sides, we get

2b = 3 and 3a = - 2

⇒ b = \(\frac{3}{2}\) and a = \(-\frac{2}{3}\)



Discussion

No Comment Found