1.

Medians QT and RS of `Triangle PQR` intersect at X. Show that `ar(triangle XQR)` is equal to `ar (quad SXTP)`

Answer» ST||QR
`/_QSP` and`/_QTR`
`ar(/_QSR)=ar(/_QTR)`
`/_QSR-/_XQR=/_QTR-/_XQR`
`ar(/_QSX)=ar(/_TXR)`
Area of`(/_PTQ)`=area of `(/_RTQ)`
`ar(/_PTQ)-ar(/_QSX)=ar(/_RTQ)-ar(/_TXR)`
`ar(PSXT)=ar(AXQR)`
proved.


Discussion

No Comment Found

Related InterviewSolutions