InterviewSolution
Saved Bookmarks
| 1. |
Method 1 of W By integration, make expressions of work done by gas in (a) Isobaric process (p=constant) (b) Isothermal process (pV=constant) (c) Adiabatic process (`PV^gamma=` constant) |
|
Answer» Correct Answer - A::D (a) Isobaric process `W=int_(V_i)^(V_f)pdV=p int_(V_i)^(V_f)dV` (as p= constant) `=p[V]_(V_i)^(V_f)=p(V_f-V_i)` `=pDeltaV` (b) Isothermal process `W=int_(V_i)^(V_f)pdV=int_(V_i)^(V_f)((nRT)/(V))dV` (as `p=(nRT)/(V)`) `=nRTint_(V_i)^(V_f)(dV)/(V)` (as T=constant) `=nRTIn((V_f)/(V_i))=nRTIn((p_i)/(p_f))` (as `p_iV_i=p_fV_f` So, `V_f/V_i=p_i/p_f`) (c) Adiabatic process `pV^gamma=` constant=k(say)=`p_iV_i^gamma=p_fV_f^gamma` Further, `p=(k)/(V^gamma)=kV^-gamma` `W=int_(V_i)^(V_f)pdV=int_(V_i)^(V_f)kV^(-gamma)dV=[(kV^(gamma+1))/(-gamma+1)]_(V_i)^(V_f)` `=(kV_f^(-gamma+1)-kV_i^(-gamma+1))/(-gamma+1)=(p_fV_f^gammaV_f^(-gamma+1)-p_iV_i^gammaV_i^(-gamma+1))/(1-gamma)` `=(p_fV_f-p_iV_i)/(1-gamma)=(nRT_f-nRT_i)/(1-gamma)=(nRDeltaT)/(1-gamma)` |
|