1.

Minimize L = 4x + 4y + zSubject tox + y + z ≤ 22x + y ≤ 3x ≥ 0,  ≥ 0, z ≥ 0

Answer»

Given linear programming is objective function is

Minimize L = 4x + 4y + z

subject to x + y + z \(\leq\) 2

2x + y \(\leq\) 3

\(\geq\)0, y \(\geq\) 0, z \(\geq\) 0

Converts given minimization problem into maximize problem:

(Put -x in place of x, -y in place of y & -z in place of z in objective function)

Then objective function is 

Maximize - L = -4x - 4y - z

subject to x + y + z \(\leq\) 2

2x + y \(\leq\) 3

\(\geq\) 0, y \(\geq\) 0, z \(\geq\) 0

Converts inequalities into equations, we get

x + y + z + x1 + 0x2 = 2

2x + y + 0z + 0x1 + x2 = 3

x, y, z, x1, x2 \(\geq\) 0

First simplex table

Cj-4-4-100
XBCBXYZX1X2
X1011110
X2021001
Zj - Cj44100

\(\because\) All Zj - Cj \(\geq\) 0

And x, y, z are not present in basic variable

\(\therefore\) x = 0, y = 0, z = 0 is the solution of redical maximize linear/programming problem.

\(\therefore\) Max(-L) = -4 x 0 - 4 x 0 - 0 = 0

\(\therefore\) Min L = Max(-L) = 0

Hence, given linear programming is minimized at x = 0, y = 0, z = 0 and minimum value of objective function be 0.



Discussion

No Comment Found

Related InterviewSolutions