InterviewSolution
Saved Bookmarks
| 1. |
मूल्यांकन कीजिए- `|{:(cosalphacoabeta,cosalphasinbeta,-sinalpha),(sinbeta,cosbeta,0),(sinalphacosbeta,-sinalphasinbeta,cosalpha):}|` |
|
Answer» दिया गया है- `|{:(cosalphacoabeta,cosalphasinbeta,-sinalpha),(-sinbeta,cosbeta,0),(sinalphacosbeta,sinalphasinbeta,cosalpha):}|` `=cosalphacosbeta |{:(cosbeta,0),(sinalphacosbeta,cosalpha):}|` `-cosalphacosbeta |{:(-sinbeta,0),(sinalphacosbeta,cosalpha):}|` `-sinalpha|{:(-sinbeta,cosbeta),(sinalphacosbeta,sinalphasinbeta):}|` (`R_1` के अनुदिश प्रसार करने पर) `=cos alphacosbeta(cosalphacosbeta-0)-cosalphasinbeta(-sinbetacosalpha-0)` `=cos^2alphacos^2beta+cos^2alphasin^2beta +sin^2alpha(sin^2beta+cos^2beta)` `=cos^2alpha(cos^2beta+sin^2beta)+sin^2alpha(sin^2beta+cos^2beta)` `=cos^2alpha(1)+sin^2alpha(10` `=cos^2alpha+sin^2alpha` `=1`. |
|