1.

निम्न समीकरण को हल कीजिए - ` sin^(-1)x+sin^(-1)2x=(pi)/(3)`

Answer» `sin^(-1)x+sin^(-1)2x=sin^(-1)""(sqrt(3))/(2)`
`implies sin^(-1)x-sin^(-1)((sqrt(3))/(2))=-sin^(-1)(2x)`
`implies sin^(-1)[xsqrt(1-(3)/(4))-(sqrt(3))/(4)sqrt(1-x^(2))]=sin^(-1)(2x)`
`implies (x)/(2)-(sqrt(3))/(2)sqrt(1-x^(2))=-2x`
`implies (5x)/(2)=(sqrt(3))/(2)sqrt(1-x^(2))`
`implies 5x=sqrt(3)*sqrt(1-x^(2))implies 25x^(2)=3(1-x^(2))`
`implies 28x^(2)=3impliesx^(2)=(3)/(28)`
`:. x= pm(1)/(2)sqrt((3)/(7))`
परन्तु `x=(-1)/(2)sqrt((3)/(7))` दी गयी समीकरण को संतुष्ट नहीं करता इसलिए `x=(1)/(2)sqrt((3)/(7))` दी गयी समीकरण का हल है ।


Discussion

No Comment Found