1.

निम्न समीकरण को हल कीजिए - `tan^(-1)(x-1)+tan^(-1)(x)+tan^(-1)(x+1)=tan^(-1) 3 x `

Answer» दिया है ` tan^(-1)""(x-1+x+x+1-(x-1)x(x+1))/(1-(x-1)x-x(x+1)-(x-1)(x+1))=tan^(-1)3x`
` tan^(-1)""(3x-x(x^(2)-1))/(1-x^(2)+x-x^(2)-x-x^(2)+1)=tan^(-1)3x`
`(3x-x^(3)+x)/(2-3x^(2))=(3x)/(1)`
`4x-x^(3)=6x-9x^(3)`
`8x^(3)-2x=0`
`2x(4x^(2)-1)=0`
x=0
तथा `4x^(2)-1=0`
` 4x^(2)=1`
`x^(2)=(1)/(4)implies x=pm(1)/(2)`
इसलिए `x=0, pm(1)/(2)`


Discussion

No Comment Found