1.

निम्न समीकरण को हल कीजिए - `tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4)`

Answer» `tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4)`
`implies tan^(-1)[(((x-1)/(x-2))+((x+1)/(x+2)))/(1-((x-1)/(x-2))((x+1)/(x+2)))]=(pi)/(4)`
`=((x-1)(x+2)+(x+1)(x-2))/((x-2)(x+2)-(x-1)(x+1))=1`
`implies (x^(2)+x-2+x^(2)-x-2)/(x^(2)-4-x^(2)+1)=1`
`implies 2x^(2)-4=-3 `
`implies x^(2)=(1)/(2)impliesx=pm(1)/(sqrt(2))`


Discussion

No Comment Found