InterviewSolution
Saved Bookmarks
| 1. |
निम्नलिखित को सिद्ध कीजिए । `int_(0)^((pi)/(2))sin^(3)x dx =(2)/(3)` |
|
Answer» माना `I=int_(0)^(pi//2)sin^(3)x dx` `" "=int_(0)^(pi//2)sin^(2)x. sinx dx` `" "=int_(0)^(pi//2)(1-cos^(2)x)sinxdx` माना `cosx=t` `rArr" "-sinx dx=dt` `rArr" "sinx dx = 0dt` तथा`" "x=0" "rArr" "t=cos 0 =1` और `" "x=(pi)/(2)" "rArr" "t=cos.(pi)/(2)=0` `therefore" "I=int_(0)^(pi//2)(1-cos^(2)x)sinx dx` `" "=int_(1)^(0)(1-t^(2))(-dt)=-[t-(t^(3))/(3)]_(1)^(0)` `" "=-{(0-0)-(1-(1)/(3))}=(2)/(3)` |
|