1.

निम्नलिखित को सिद्ध कीजिए । `int_(1)^(3)(dx)/(x^(2)(x+1))=(2)/(3)+log.(2)/(3)`

Answer» `int_(1)^(3)(1)/(x^(2)(x+1))dx=(2)/(3)+log.(2)/(3)`
माना `" "(1)/(x^(2)(x+1))=(A)/(x)+(B)/(x^(2))+(C)/(x+1)" …(1)"`
`rArr" "1=Ax(x+1)+B(x+1)+Cx^(2)" …(2)"`
x = 0 तो `1=0+B+0" "rArr" "B=1"`
`x = -1` तो `1=0+0+C" "rArr" "C=1`
`x^(2)` के गुणांकों की तुलना करने पर ,
`0=A+C" "rArr" "A=-C=-1`
`therefore int_(1)^(3)(1)/(x^(2)(x+1))dx`
`=int_(1)^(3)(-(1)/(x)+(1)/(x^(2))+(1)/(x+1))dx`
`=[-log|x|-(1)/(x)+log|x+1|]_(1)^(3)`
`=[log|(x+1)/(x)|-(1)/(x)]_(1)^(3)`
`=(log|(4)/(3)|-(1)/(3))-(log|(2)/(1)|-(1)/(2))`
`=(log.(4)/(3)-log2)+(1-(1)/(3))`
`=log((4)/(3)xx(1)/(2)+(2)/(3)=log.(2)/(3)+(2)/(3))`
`" "`यही सिद्ध करना था ।


Discussion

No Comment Found