InterviewSolution
Saved Bookmarks
| 1. |
निम्नलिखित प्रश्न 7 से 14 तक प्रत्येक समीकरण निकाय को आव्यूह विधि से हल कीजिये । `x-y+z=4` `2x+y-3z=0` `x+y+z=2` |
|
Answer» Writing the given equations in matrix form AX=B where `A=[{:(1,-1,1),(2,1,-3),(1,1,1)]:}X=[{:(x),(y),(z):}],B=[{:(4),(0),(2):}]` i.e, `A=[{:(1,-1,1),(2,1,-3),(1,1,1)]:}[{:(x),(y),(z):}]=[{:(4),(0),(2):}]` On applying `R_(2) to R_(2)-2R_(3) to -R_(1)`, we get `A=[{:(1,-1,1),(0,3,-5),(0,2,0)]:}[{:(x),(y),(z):}]=[{:(4),(-8),(-2):}]` `:. [{:(x-y+z),(3y-5z),(2y):}]=[{:(4),(-8),(-2):}]` `:.` By equality of matrices, we get `x-y+z=4" "...(1)` `3y-5z=-8" "...(2)` `2y=-2" "...(3)` `:.` from equation (3) we, get `y=-1` Substituting `y=-1` in (2), we get `3(-1)-5z=-8` `-3-5z=-8` `:. -5z=-8` `:. z=1` Substituting `y=-1, z=1` in equation, (1), z=1 in equation, (1) `x+1+1=4:x=2` `:.` The required solution is `x=2,y=-1,z=1` |
|