1.

निम्नलिखित समीकरण को हल कीजिए - `tan^(-1)((1-x)/(1+x))=(1)/(2)tan^(-1)x, (x gt0).`

Answer» यहाँ `tan^(-1)((1-x)/(1+x))=(1)/(2)tan^(-1)x`
`x=tan theta` रखने पर
`tan^(-1)[(1-tan theta)/(1+tan theta)]=(1)/(2)tan^(-1)(tan theta)`
`rArr tan^(-1)[(tan.(pi)/(4)-tan theta)/(1+tan.(pi)/(4)tan theta)]=(1)/(2)theta`
`rArr tan^(-1)[tan((pi)/(4)-theta)]=(1)/(2)theta,`
`" "[because tan(A-B)=(tan A-tanB)/(1+tanA tanB)]`
`rArr" "(pi)/(4)-theta=(1)/(2)theta`
`rArr" "(3)/(2)theta=(pi)/(4)`
`rArr" "theta=(pi)/(6)`
`rArr" "tan^(-1)x=((pi)/(6))`
`rArr" "x=(1)/(3).`


Discussion

No Comment Found