1.

निम्नलिखित समीकरणों को हल कीजिए - `tan^(-1)((x-1)/(x+2))+tan^(-1)((x+1)/(x+2))=(pi)/(4).`

Answer» दिया गया समीकरण है-
`tan^(-1)((x-1)/(x-2))+tan^(-1)((x+1)/(x+2))=(pi)/(4)`
`rArr" "tan^(-1)(((x-1)/(x-2)+(x+1)/(x+2))/(1-((x-1)/(x-2))((x+1)/(x+2))))=(pi)/(4),`
`[because tan^(-1)x+tan^(-1)y=tan^(-1)((x+y)/(1-xy))]`
`rArr tan^(-1)[(((x-1)(x+2)+(x+1)(x-2))/((x-2)(x+2)))/(((x-2)(x+2)-(x-1)(x+1))/((x-2)(x+2)))]=(pi)/(4)`
`rArr tan^(-1)[(x^(2)+2x-x-2+x^(2)+2x+x-2)/((x^(2)-4)-(x^(2)-1))]=(pi)/(4)`
`rArr" "tan^(-1)((2x^(2)-4)/(-3))=(pi)/(4)`
`rArr" "(2x^(2)-4)/(-3)=tan.(pi)/(4)`
`rArr" "(2x^(2)-4)/(-3)=1` ltbr `rArr" "2x^(2)-4=-3`
`rArr" "2x^(2)=1`
`rArr" "x=pm(1)/(sqrt2).`


Discussion

No Comment Found