1.

निम्नलिखित समीकरणों को हल कीजिए - `tan^(-1)x+2cot^(-1)x=(2pi)/(3).`

Answer» दिया गया समीकरण है -
`tan^(-1)x+2cot^(-1)x=(2pi)/(3)`
`rArr" "tan^(-1)x+2tan^(-1)((1)/(x))=(2pi)/(3),`
`" "[because cot^(-1)x=tan^(-1).(1)/(x)]`
`rArr" "tan^(-1)x+tan^(-1)((2xx+(1)/(x))/(1-(1)/(x^(2))))=(2pi)/(3)`
`rArr" "tan^(-1)x+tan^(-1)(((2)/(x))/((x^(2)-1)/(x^(2))))=(2pi)/(3)`
`rArr" "tan^(-1)x+tan^(-1)((2x)/(x^(2)-1))=(2pi)/(3)`
`rArr" "tan^(-1)((x+(2x)/(x^(2)-1))/(1-x xx(2x)/(x^(2)-1)))=(2pi)/(3)`
`rArr" "tan^(-1)((x^(3)+x)/(-1-x^(2)))=(2pi)/(3)`
`rArr" "(x^(3)+x)/(-1-x^(2))=tan((2pi)/(3))`
`rArr" "-(x^(3)+x)/(1+x^(2))tan(pi-(pi)/(3))`
`rArr" "-(x^(3)-x)/(1+x^(2))=-tan.(pi)/(3)`
`rArr" "(x(1+x^(2)))/(1+x^(2))=sqrt3.`
`rArr" "x=sqrt3.`


Discussion

No Comment Found